6,621 research outputs found

    Exploiting Full/Half-Duplex User Relaying in NOMA Systems

    Get PDF
    In this paper, a novel cooperative non-orthogonal multiple access (NOMA) system is proposed, where one near user is employed as decode-and-forward (DF) relaying switching between full-duplex (FD) and half-duplex (HD) mode to help a far user. Two representative cooperative relaying scenarios are investigated insightfully. The \emph{first scenario} is that no direct link exists between the base station (BS) and far user. The \emph{second scenario} is that the direct link exists between the BS and far user. To characterize the performance of potential gains brought by FD NOMA in two considered scenarios, three performance metrics outage probability, ergodic rate and energy efficiency are discussed. More particularly, we derive new closed-form expressions for both exact and asymptotic outage probabilities as well as delay-limited throughput for two NOMA users. Based on the derived results, the diversity orders achieved by users are obtained. We confirm that the use of direct link overcomes zero diversity order of far NOMA user inherent to FD relaying. Additionally, we derive new closed-form expressions for asymptotic ergodic rates. Based on these, the high signal-to-noise radio (SNR) slopes of two users for FD NOMA are obtained. Simulation results demonstrate that: 1) FD NOMA is superior to HD NOMA in terms of outage probability and ergodic sum rate in the low SNR region; and 2) In delay-limited transmission mode, FD NOMA has higher energy efficiency than HD NOMA in the low SNR region; However, in delay-tolerant transmission mode, the system energy efficiency of HD NOMA exceeds FD NOMA in the high SNR region.Comment: 15 pages,10 figure

    Inorganic nitrogen fertilizer and high N application rate promote N2O emission and suppress CH4 uptake in a rotational vegetable system

    Get PDF
    Understanding the influence of management practices on greenhouse gas (GHG) emissions from greenhouse cropping is of great importance for assessing the environmental impacts of the greenhouse cropping industry and improving its sustainability. A tomato–cucumber–tomato rotation experiment was carried out in a typical solar greenhouse in northwest China with four treatments including two irrigation levels (regular (RI) and low (LI)) and two fertilizer types (organic fertilizer (N1) and inorganic fertilizer (N2)). Greenhouse gas fluxes (nitrous oxide, N2O, and methane, CH4) were measured regularly using the closed chamber method during the three growing seasons, along with soil water-filled pore space (WFPS), temperature, mineral-N concentration and nitrobacteria, nitrosomonas and denitrifying bacteria abundance. Over the rotation, the soil acted as a source for N2O and a sink for CH4, with the mean fluxes of 0.12 mg N2O-N m−2 h−1 and -0.31 mg CH4-C m−2 h−1, respectively. The stepwise multiple linear regressions indicated that WFPS and soil temperature accounted for significant portion of N2O emission and CH4 uptake variations, respectively for both fertilizer types. Fertilization rate and type resulted in much greater difference of cumulative GHG emission between treatments than the irrigation level. Inorganic fertilizer with higher nitrogen application rate usually resulted in higher cumulative N2O emission and lower CH4 uptake than organic fertilizer application. Over the rotation, total greenhouse emission (GHGt) and greenhouse emission intensity (GHGI) on average followed the same order of RIN2 > LIN2 > LIN1 > RIN1 with N2O emission as the dominant component for each treatment. Overall, organic fertilizer with proper water application under drip irrigation can effectively mitigate greenhouse gas emissions and maintain relatively high and stable vegetable yields in solar greenhouse cropping in northwest China

    Elevated [CO2] alleviates the impacts of water deficit on xylem anatomy and hydraulic properties of maize stems

    Get PDF
    Plants can modify xylem anatomy and hydraulic properties to adjust to water status. Elevated [CO2] can increase plant water potential via reduced stomatal conductance and water loss. This raises the question of whether elevated [CO2], which thus improves plant water status, will reduce the impacts of soil water deficit on xylem anatomy and hydraulic properties of plants. To analyse the impacts of water and [CO2] on maize stem xylem anatomy and hydraulic properties, we exposed potted maize plants to varying [CO2] levels (400, 700, 900, and 1,200 ppm) and water levels (full irrigation and deficit irrigation). Results showed that at current [CO2], vessel diameter, vessel roundness, stem cross‐section area, specific hydraulic conductivity, and vulnerability to embolism decreased under deficit irrigation; yet, these impacts of deficit irrigation were reduced at elevated [CO2]. Across all treatments, midday stem water potential was tightly correlated with xylem traits and displayed similar responses. A distinct trade‐off between efficiency and safety in stem xylem water transportation in response to water deficit was observed at current [CO2] but not observed at elevated [CO2]. The results of this study enhance our knowledge of plant hydraulic acclimation under future climate environments and provide insights into trade‐offs in xylem structure and function

    Cultural-based visual expression: Emotional analysis of human face via Peking Opera Painted Faces (POPF)

    Get PDF
    © 2015 The Author(s) Peking Opera as a branch of Chinese traditional cultures and arts has a very distinct colourful facial make-up for all actors in the stage performance. Such make-up is stylised in nonverbal symbolic semantics which all combined together to form the painted faces to describe and symbolise the background, the characteristic and the emotional status of specific roles. A study of Peking Opera Painted Faces (POPF) was taken as an example to see how information and meanings can be effectively expressed through the change of facial expressions based on the facial motion within natural and emotional aspects. The study found that POPF provides exaggerated features of facial motion through images, and the symbolic semantics of POPF provides a high-level expression of human facial information. The study has presented and proved a creative structure of information analysis and expression based on POPF to improve the understanding of human facial motion and emotion

    Example-based image color and tone style enhancement

    Get PDF
    Color and tone adjustments are among the most frequent image enhancement operations. We define a color and tone style as a set of explicit or implicit rules governing color and tone adjustments. Our goal in this paper is to learn implicit color and tone adjustment rules from examples. That is, given a set of examples, each of which is a pair of corresponding images before and after adjustments, we would like to discover the underlying mathematical relationships optimally connecting the color and tone of corresponding pixels in all image pairs. We formally define tone and color adjustment rules as mappings, and propose to approximate complicated spatially varying nonlinear mappings in a piecewise manner. The reason behind this is that a very complicated mapping can still be locally approximated with a low-order polynomial model. Parameters within such low-order models are trained using data extracted from example image pairs. We successfully apply our framework in two scenarios, low-quality photo enhancement by transferring the style of a high-end camera, and photo enhancement using styles learned from photographers and designers. © 2011 ACM.postprin

    Dissolved Iron Supply from Asian Glaciers: Local Controls and a Regional Perspective

    Get PDF
    Ice sheets have been shown to deliver large amounts of labile iron (Fe) to aquatic ecosystems; however, the role of glaciers distinct from ice sheets in supplying labile Fe to downstream ecosystems is less well understood despite their rapid volume loss globally. Direct and continuous measurements of Fe from glaciers throughout an entire melt season are very limited to date. Here we present extensive seasonal data on 0.45-μm-filtered Fe (dFe) from three glaciers in Asia. Concentrations of dFe are negatively correlated with glacier discharge, and dFe yields are closely related to specific discharge. Based on our study and previously published dFe data, we estimate the release of dFe from Asian glaciers to be 23.8±14.1 Gg/a. We further compile a global data set of dFe from more than 12 glaciers, which, when combined with data on glacier discharge, suggest that the release of dFe from glaciers globally is on the order of 185±172 Gg/a. This finding suggests that glaciers may provide a substantial, but largely unrecognized source of potentially labile Fe, and may become increasingly important for the Fe biogeochemical cycle in a warming climate

    Room temperature mid-infrared InAsSbN multi-quantum well photodiodes grown by MBE

    Get PDF
    Room temperature photoresponse in the mid-infrared spectral region is demonstrated from InAsSbN/InAs multi-quantum well photodiodes grown by nitrogen plasma assisted molecular beam epitaxy. The structural quality of the InAsSbN MQWs was ascertained in situ by reflection high energy electron diffraction and ex situ by high resolution x-ray diffraction and photoluminescence measurements. The extended long wavelength photoresponse is identified to originate from the electron–heavy hole (e1–hh1) and electron–light hole (e1–lh1) transitions in the InAsSbN MQW, with a cut off wavelength ~4.20 µm and peak detectivity D *  =  1.25  ×  109 cm Hz1/2 W−1

    Federated Learning with Differential Privacy: Algorithms and Performance Analysis

    Get PDF
    In this paper, to effectively prevent information leakage, we propose a novel framework based on the concept of differential privacy (DP), in which artificial noises are added to the parameters at the clients side before aggregating, namely, noising before model aggregation FL (NbAFL). First, we prove that the NbAFL can satisfy DP under distinct protection levels by properly adapting different variances of artificial noises. Then we develop a theoretical convergence bound of the loss function of the trained FL model in the NbAFL. Specifically, the theoretical bound reveals the following three key properties: 1) There is a tradeoff between the convergence performance and privacy protection levels, i.e., a better convergence performance leads to a lower protection level; 2) Given a fixed privacy protection level, increasing the number NN of overall clients participating in FL can improve the convergence performance; 3) There is an optimal number of maximum aggregation times (communication rounds) in terms of convergence performance for a given protection level. Furthermore, we propose a KK-random scheduling strategy, where KK (1<K<N1<K<N) clients are randomly selected from the NN overall clients to participate in each aggregation. We also develop the corresponding convergence bound of the loss function in this case and the KK-random scheduling strategy can also retain the above three properties. Moreover, we find that there is an optimal KK that achieves the best convergence performance at a fixed privacy level. Evaluations demonstrate that our theoretical results are consistent with simulations, thereby facilitating the designs on various privacy-preserving FL algorithms with different tradeoff requirements on convergence performance and privacy levels
    corecore